

Техническое описание

Теплообменник типа «труба в трубе»

типа НЕ

Теплообменники типа НЕ предназначены для обеспечения теплообмена между жидкостной линией и линией всасывания холодильной установки.

Целью теплообмена является использование охлаждающей способности пара в линии всасывания, которая при отсутствии теплообменника теряется за счет поглощения теплоты из окружающего воздуха через поверхность неизолированных трубопроводов линии всасывания.

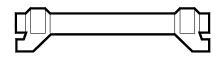
В теплообменнике вышеупомянутая охлаждающая способность пара используется для переохлаждения жидкого хладагента.

Преимущества

- Обеспечивают высокую холодопроизводительность испарителя
- Обеспечивают поступление жидкого хладагента в терморегулирующий вентиль без паровой фазы
- HE 0.5-1.5: Возможно использование в следующих взрывоопасных зонах: категория 3 (зона 2)
- Способствуют максимальному использованию производительности испарителя при настройке терморегулируемого расширительного клапана на минимальный перегрев хладагента на выходе из испарителя
- Предотвращают запотевание и обмерзание всасывающего трубопровода

Сертификация

Сертификат соответствия ГОСТ AN30


Технические характеристики

Хладагенты	R22, R1270*, R134a, R290*, R404A, R407A, R407C, R407F, R448A, R449A, R450A, R452A, R507A, R513A, R600*, R600a* *) HE 0.5 - 1.5		
Диапазон рабочих температур	-60 – 120 °C		
May	HE 0.5, HE 1.0, HE 1.5, HE 4.0: PS/MWP = 28 6ap		
Максимальное рабочее давление	HE 8.0: PS/MWP = 21,5 6ap		
Marketina	HE 0.5, HE 1.0, HE 1.5, HE 4.0: Pe = 40 бар		
Максимальное испытательное давление	HE 8.0: Pe = 28 бар		

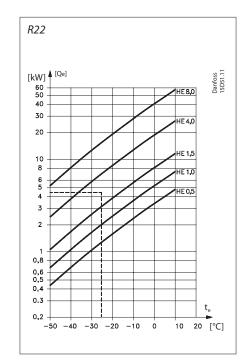
Этот продукт (НЕ 0.5 - 1.5) Расчетное для R290, R600, R600a и R1270 по результатам аттестации в качестве источника воспламенения в соответствии с стандартом EN13463-1.

Для просмотра полного списка применяемых хладагентов, посетите www.products.danfoss.com и осуществите поиск по индивидуальному коду, где применяемые хладагенты указаны в качестве одного из параметров технических характеристик".

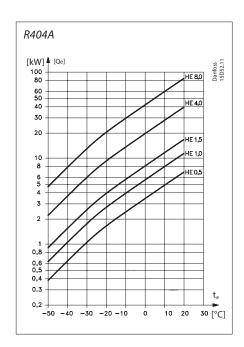
Коды для заказа

		.,			
Тип	Жидкості	ная линия	Линия вс	Кодовый номер	
	(дюймы)	(MM)	(дюймы)	(MM)	помер
HE 0.5	-	6	-	12	015D0001
	1/4	_	1/2	_	015D0002
HE 1.0	-	10	-	16	015D0003
	3/8	_	5/8	_	015D0004
HE 1.5	-	12	_	18	015D0005
	1/2	_	3/4	-	015D0006
HE 4.0	-	12	_	28	015D0007
	1/2	_	1 1/8	-	015D0008
HE 8.0	_	16	_	42	015D0009
	5/8	_	1 5/8	-	015D0010

Как правило, размеры теплообменника типа НЕ определяются присоединительными размерами трубопроводов холодильной установки.


Конструкция теплообменника обеспечивает оптимальную скорость потока пара во всасывающем трубопроводе и небольшой перепад давления. Следовательно, производительность теплообменника будет соответствовать производительной установки.

Наряду с этим обеспечивается возврат масла в компрессор.


Если основной целью применения теплообменника НЕ является предотвращение запотевания и обмерзания трубопроводов линии всасывания, можно использовать теплообменник на размер больше по сравнению с требуемой производительностью. Теплообменник, используемый как конденсатор, всегда следует выбирать по присоединительным размерам трубопроводов.

Выбор производительности

Выбор производительности *(продолжение)*

Для точного подбора размера теплообменника можно использовать номограммы зависимости производительности холодильной установки ($Q_{\rm e}$) от температуры кипения ($t_{\rm e}$) для хладагентов R22, R134a и R404A .

Пример Производительность установки Q_e = 4,5 кВт Хладагент = R22 Температура кипения t_e = -25 °C

Из номограммы для хладагента R22 следует, что оптимальным теплообменником в нашем случае является теплообменник HE 4.0. Кривая для HE 4.0 лежит сразу над точкой пересечения линий, проходящих через точку Q_e = 4,5 кВт и t_e = -25 °C.

Тепловой поток Q, проходящий через теплообменник, рассчитывается по формуле: $Q=k\times A\times \Delta t_{m'}$, где:

Q тепловой поток, Вт

k коэффициент теплопередачи, $B \tau / m^2$ $^{\circ}C$

Площадь поверхности теплообмена,
 м²

 Δt_{m} среднелогарифмическая разность температур, °C, рассчитываемая по формуле:

$$\Delta t_{m} = \frac{\Delta t_{\text{MAKC.}} - t_{\text{MAKF}}}{\Delta t_{\text{MAKC.}}}$$
In
$$\frac{\Delta t_{\text{MAKC.}}}{\Delta t_{\text{MAKF}}}$$

Величина $k \times A$ определена экспериментальным путем (см. таблицу).

Тип теплообменника	К × А Сухой всасываемый пар / жидкий хладагент ¹) (для холодильных установок, работающих на фторсодержащих хладагентах), Вт / °С					
HE 0.5	2,3					
HE 1.0	3,1					
HE 1.5	4,9					
HE 4.0	11,0					
HE 8.0	23,0					

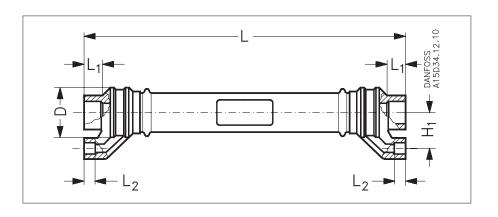
Приведенные значения справедливы только для сухого пара. Даже при использовании терморегулируемого
расширительного клапана всасываемый пар будет переносить небольшое количество капель жидкости
в линию всасывания.

Эти капли будут задерживаться на ребрах теплообменника с последующим испарением. Это может привести к меньшему перегреву пара по сравнению с расчетным значением.

Конструкция и принцип действия

- Danfoss Штуцеры линии всасывания
- 1.
- 2. Штуцеры жидкостной линии
- Внутренняя камера 3.
- Внешняя камера

Расположенные под углом оребренные секции встроены во внутреннюю камеру (3) для обеспечения турбулентного режима потока с минимальным сопротивлением.


Поток пара проходит через камеру по прямой без изменения направления и образования масляных карманов.

Жидкий хладагент проходит в обратном пару направлении через внешнюю камеру (4).

В качестве направляющей потока используется встроенный проволочный змеевик, обеспечивающий максимальную теплопередачу.

Поток горячего хладагента, проходящий через внешнюю камеру, в нормальных условиях эксплуатации предотвращает запотевание внешней трубы.

Размеры (мм) и масса (кг)

							Объем	
Тип теплообменника	H ₁	L	L ₁	L ₂	øD	Масса нетто	Внешняя камера	Внутренняя камера
							CM ³	CM ³
HE 0.5	20	178	10	7	27,5	0,3	8,5	23,0
HE 1.0	25	268	12	9	30,2	0,5	25,0	45,0
HE 1.5	30	323	14	10	36,2	1,0	40,0	100,0
HE 4.0	38	373	20	10	48,3	1,5	80,0	260,0
HE 8.0	48	407	29	10	60,3	2,3	175,0	475,0

Danfoss не несет ответственности за возможные ошибки в каталогах, брошюрах и других печатных материалах. Danfoss оставляет за собой право вносить изменения в продукцию без предварительного уведомления. Это относится также к уже заказанной продукции, если только вносимые изменения не требуют соответствующей коррекции уже согласованных спецификаций. Все торговые марки в данном документе являются собственностью соответствующих компаний. Название и логотип Danfoss являются собственностью компании Danfoss A/S. Все права защищены.